Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
The Korean Journal of Physiology and Pharmacology ; : 37-45, 2022.
Article in English | WPRIM | ID: wpr-919337

ABSTRACT

The aim of the present study was to investigate the physiological role of nicotinamide phosphoribosyltransferase (NAMPT) associated with odontogenic differentiation during tooth development in mice. Mouse dental papilla cell-23 (MDPC-23) cells cultured in differentiation media were stimulated with the specific NAMPT inhibitor, FK866, and Visfatin (NAMPT) for up to 10 days. The cells were evaluated after 0, 4, 7, and 10 days. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The mineralization assay was performed by staining MDPC-23 cells with Alizarin Red S solution. After cultivation, MDPC-23 cells were harvested for quantitative PCR or Western blotting. Analysis of variance was performed using StatView 5.0 software (SAS Institute Inc., Cary, NC, USA). Statistical significance was set at p < 0.05. The expression of NAMPT increased during the differentiation of murine odontoblast-like MDPC-23 cells. Furthermore, the up-regulation of NAMPT promoted odontogenic differentiation and accelerated mineralization through an increase in representative odontoblastic biomarkers, such as dentin sialophosphoprotein, dentin matrix protein-1, and alkaline phosphatase in MDPC-23 cells. However, treatment of the cells with the NAMPT inhibitor, FK866, attenuated odontogenic differentiation, as evidenced by the suppression of odontoblastic biomarkers. These data indicate that NAMPT regulated odontoblastic differentiation through the regulation of odontoblastic biomarkers. The increase in NAMPT expression in odontoblasts was closely related to the formation of the extracellular matrix and dentin via the Runx signaling pathway. Therefore, these data suggest that NAMPT is a critical regulator of odontoblast differentiation during tooth development.

2.
Clinics in Orthopedic Surgery ; : 169-177, 2022.
Article in English | WPRIM | ID: wpr-924879

ABSTRACT

Background@#Studies have reported favorable outcomes using the paratricipital approach for fixation of distal humeral intra-articular fractures. However, literature evaluating the clinical results of the approach remains limited. The objective of this study was to compare clinical outcomes between type 13C2 and type 13C1 distal humeral fractures after open reduction and internal fixation performed using the same approach and same type of plate. @*Methods@#A total of 52 adults with type 13C1 or 13C2 distal humeral fractures were treated surgically at our institution during 2006 to 2018. We retrospectively analyzed data from 29 of these patients (19 with type 13C1 fractures and 10 with 13C2 fractures) who met the inclusion criteria. All subjects were followed for a minimum of 2 years postoperatively. Clinical and radiologic results were analyzed to determine differences in outcomes between the two types of fractures. Clinical results were evaluated using elbow range of motion (ROM), Mayo Elbow Performance Score (MEPS), and Quick Disabilities of the Arm, Shoulder and Hand (Q-DASH) score. Alignment, fracture union, and presence of posttraumatic arthritis were evaluated radiologically. @*Results@#The patients’ mean age was 51 years, and the mean duration of follow-up was 29 months. Mean ROM was 129.5° ± 21.5° in the type 13C1 group and 123.0° ± 20.6° in the 13C2 group (p = 0.20). Mean Q-DASH score was 12.6 ± 11.7 in the 13C1 group and 16.2 ± 19.8 in the 13C2 group (p = 0.60). Mean MEPS was 92.9 ± 8.5 in the 13C1 group and 85.0 ± 14.1 in the 13C2 group (p = 0.09). Carrying angle did not differ significantly between the 13C1 and 13C2 groups. No patient in either group exhibited nonunion or posttraumatic arthritis. @*Conclusions@#Although the paratricipital approach has the disadvantage of limited visualization of articular surfaces, there were no differences in surgical outcomes between type 13C1 and type 13C2 distal humeral fractures after fixation using this approach.Thus, surgeons may need to consider using the paratricipital approach for open reduction and internal fixation of 13C2 distal humeral fractures.

3.
Journal of Korean Medical Science ; : e237-2022.
Article in English | WPRIM | ID: wpr-938021

ABSTRACT

Background@#Several cohort studies have explored the relationship between androgen deprivation therapy (ADT) and the severity of coronavirus disease 2019 (COVID-19). This study aimed to characterize the relationship between ADT and the severity of COVID-19 in patients with prostate cancer. @*Methods@#A systematic search was conducted using PubMed, Embase, and Cochrane Library databases from the inception of each database until February 31, 2020. Patients with prostate cancer who were treated with ADT were assigned to treatment group while those patients who were not treated with ADT were assigned to the control group. Outcomes were severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) positivity, hospitalization, intensive care unit (ICU) admission, and death. The risk of bias was evaluated using ROBINS-I (Risk Of Bias In Non-randomized Studies of Interventions) tool. @*Results@#Three studies with qualitative synthesis were included. Finally, two studies with quantitative synthesis having a total of 44,213 patients were included for the present systematic review. There was no significant difference in SARS-CoV-2 positive rate (odds ratio [OR], 0.52; 95% confidence intervals [Cis], 0.13–2.09; P = 0.362), hospitalization (OR, 0.52; 95% CIs, 0.07–3.69; P = 0.514), ICU admission (OR, 0.93; 95% CIs, 0.39–2.23, P = 0.881), or death (OR, 0.88; 95% CIs, 0.06–12.06; P = 0.934) between ADT and non-ADT groups. @*Conclusion@#Qualitative and quantitative analyses of previous studies revealed no significant effect of ADT on COVID-19. However, more studies with higher quality that explore biochemical and immunological factors involved are needed to confirm this finding in the future.

4.
International Journal of Oral Biology ; : 15-22, 2021.
Article in English | WPRIM | ID: wpr-898708

ABSTRACT

Alpha-lipoic acid (ALA) is a naturally occurring antioxidant and has been previously used to treat diabetes and cardiovascular disease. However, the autophagy effects of ALA against oxidative stress-induced dopaminergic neuronal cell injury remain unclear. The aim of this study was to investigate the role of ALA in autophagy and apoptosis against oxidative stress in the SH-SY5Y human dopaminergic neuronal cell line. We examined SH-SY5Y phenotypes using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (cell viability/proliferation), 4′,6-diamidino-2-phenylindole dihydrochloride nuclear staining, Live/Dead cell assay, cellular reactive oxygen species (ROS) assay, immunoblotting, and immunocytochemistry. Our data showed ALA attenuated hydrogen peroxide (H2O2)-induced ROS generation and cell death. ALA effectively suppressed Bax up-regulation and Bcl-2 and BclxL down-regulation. Furthermore, ALA increased the expression of the antioxidant enzyme, heme oxygenase-1. Moreover, the expression of Beclin-1 and LC-3 autophagy biomarkers was decreased by ALA in our cell model. Combined, these data suggest ALA protects human dopaminergic neuronal cells against H2O2-induced cell injury by inhibiting autophagy and apoptosis.

5.
International Journal of Oral Biology ; : 23-29, 2021.
Article in English | WPRIM | ID: wpr-898707

ABSTRACT

Demethoxycurcumin (DMC), which is a curcuminoid found in turmeric, has anti-proliferative effects on cancer cells. However, the effect of DMC on osteosarcoma has not been established. The aim of this study was to examine the effects of DMC on cell growth and apoptosis induction in MG-63 human osteosarcoma cells. This study was investigated using 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromid assay, Live/Dead cell assay, 4’, 6-diamidino-2-phenylindole staining, and immunoblotting in MG-63 cells. DMC induced MG-63 cell death in a dosedependent manner, with an estimated IC50 value of 54.4 μM. DMC treatment resulted in nuclear condensation in MG-63 cells. DMC-induced apoptosis in MG-63 cells was mediated by the expression of Fas and activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting results showed that Bcl-2 and Bcl-xL were downregulated, while Bax and Bad were upregulated by DMC in MG-63 cells. These results indicated that DMC inhibits cell proliferation and induces apoptotic cell death in MG-63 human osteosarcoma cells via the death receptormediated extrinsic apoptotic pathway and mitochondria-mediated intrinsic apoptotic pathway.

6.
International Journal of Oral Biology ; : 15-22, 2021.
Article in English | WPRIM | ID: wpr-891004

ABSTRACT

Alpha-lipoic acid (ALA) is a naturally occurring antioxidant and has been previously used to treat diabetes and cardiovascular disease. However, the autophagy effects of ALA against oxidative stress-induced dopaminergic neuronal cell injury remain unclear. The aim of this study was to investigate the role of ALA in autophagy and apoptosis against oxidative stress in the SH-SY5Y human dopaminergic neuronal cell line. We examined SH-SY5Y phenotypes using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (cell viability/proliferation), 4′,6-diamidino-2-phenylindole dihydrochloride nuclear staining, Live/Dead cell assay, cellular reactive oxygen species (ROS) assay, immunoblotting, and immunocytochemistry. Our data showed ALA attenuated hydrogen peroxide (H2O2)-induced ROS generation and cell death. ALA effectively suppressed Bax up-regulation and Bcl-2 and BclxL down-regulation. Furthermore, ALA increased the expression of the antioxidant enzyme, heme oxygenase-1. Moreover, the expression of Beclin-1 and LC-3 autophagy biomarkers was decreased by ALA in our cell model. Combined, these data suggest ALA protects human dopaminergic neuronal cells against H2O2-induced cell injury by inhibiting autophagy and apoptosis.

7.
International Journal of Oral Biology ; : 23-29, 2021.
Article in English | WPRIM | ID: wpr-891003

ABSTRACT

Demethoxycurcumin (DMC), which is a curcuminoid found in turmeric, has anti-proliferative effects on cancer cells. However, the effect of DMC on osteosarcoma has not been established. The aim of this study was to examine the effects of DMC on cell growth and apoptosis induction in MG-63 human osteosarcoma cells. This study was investigated using 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromid assay, Live/Dead cell assay, 4’, 6-diamidino-2-phenylindole staining, and immunoblotting in MG-63 cells. DMC induced MG-63 cell death in a dosedependent manner, with an estimated IC50 value of 54.4 μM. DMC treatment resulted in nuclear condensation in MG-63 cells. DMC-induced apoptosis in MG-63 cells was mediated by the expression of Fas and activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting results showed that Bcl-2 and Bcl-xL were downregulated, while Bax and Bad were upregulated by DMC in MG-63 cells. These results indicated that DMC inhibits cell proliferation and induces apoptotic cell death in MG-63 human osteosarcoma cells via the death receptormediated extrinsic apoptotic pathway and mitochondria-mediated intrinsic apoptotic pathway.

8.
The Korean Journal of Physiology and Pharmacology ; : 249-257, 2020.
Article in English | WPRIM | ID: wpr-903908

ABSTRACT

The aim of the present study was to investigate the pathophysiological etiology of osteoarthritis that is mediated by the apoptosis of chondrocytes exposed to 25-hydroxycholesterol (25-HC), an oxysterol synthesized by the expression of cholesterol-25-hydroxylase (CH25H) under inflammatory conditions. Interleukin-1β induced the apoptosis of chondrocytes in a dose- dependent manner. Furthermore, the production of 25-HC increased in the chondrocytes treated with interleukin-1β through the expression of CH25H. 25-HC decreased the viability of chondrocytes. Chondrocytes with condensed nucleus and apoptotic populations increased by 25- HC. Moreover, the activity and expression of caspase-3 were increased by the death ligand-mediated extrinsic and mitochondria-dependent intrinsic apoptotic pathways in the chondrocytes treated with 25-HC. Finally, 25-HC induced not only caspasedependent apoptosis, but also induced proteoglycan loss in articular cartilage ex vivo cultured rat knee joints. These data indicate that 25-HC may act as a metabolic pathophysiological factor in osteoarthritis that is mediated by progressive chondrocyte death in the articular cartilage with inflammatory condition.

9.
International Journal of Oral Biology ; : 107-114, 2020.
Article | WPRIM | ID: wpr-835492

ABSTRACT

Acacetin, which is present in damiana (Turnera diffusa) and black locust (Robinia pseudoacacia), has several pharmacologic activities such as antioxidant, anti-inflammatory, and anti-proliferative effects on cancer cells. However, the effect of acacetin on head and neck cancers has not been clearly established. This study aimed to examine the effects of acacetin on cell growth and apoptosis induction in FaDu human pharyngeal carcinoma cells. These were investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, Live/Dead cell assay, 4′,6-diamidino-2-phenylindole dihydrochloride staining, caspase-3 and caspase-7 activation assay, and immunoblotting in FaDu cells. Acacetin induced FaDu cell death in a dose-dependent manner, with an estimated IC50 value of 41.9 µM, without affecting the viability of L-929 mouse fibroblasts as normal cells. Acacetin treatment resulted in nuclear condensation in the FaDu cells. It promoted the proteolytic cleavage of procaspase-3, -7, -8, and -9 with increasing amounts of the cleaved caspase isoforms in FaDu cells. Acacetin-induced apoptosis in FaDu cells was mediated by the expression of Fas and activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting showed downregulation of the anti-apoptotic mitochondrial proteins Bcl-2 and Bcl-xL, but upregulation of the mitochondria-dependent pro-apoptotic proteins Bax and Badin FaDu cells after acacetin treatment. These findings indicate that acacetin inhibits cell proliferation and induces apoptotic cell death in FaDu human pharyngeal carcinoma cells via both the death receptor-mediated extrinsic apoptotic pathway and the mitochondria-mediated intrinsic apoptotic pathway.

10.
International Journal of Oral Biology ; : 8-14, 2020.
Article | WPRIM | ID: wpr-835487

ABSTRACT

Bilobalide isolated from the leaves of Ginkgo biloba has several pharmacological activities such as neuroprotective, anti-inflammatory, and anticonvulsant. However, the effect of bilobalide on cancer has not been clearly established. The main purpose of this study was to investigate the effect of bilobalide on cell growth and apoptosis induction in FaDu human pharyngeal squamous cell carcinoma. This was examined by 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide assay, nuclear 4’,6-diamidino-2-phenylindole dihydrochloride staining, DNA fragmentation analysis, and immunoblotting. Bilobalide inhibited the growth of FaDu cells in dose- and time-dependent manners. Treatment with bilobalide resulted in nuclear condensation and DNA fragmentation in FaDu cells. Furthermore, it promoted the proteolytic cleavage of procaspase-3/-7/-8/-9 with increase in the amount of cleaved caspase-3/-7/-8/-9. Bilobalide-induced apoptosis in FaDu cells was mediated by the expression of Fas and the activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting revealed that the antiapoptotic mitochondrial protein Bcl-2 was downregulated, but the proapoptotic protein Bax was upregulated by bilobalide in FaDu cells. Bilobalide significantly increased Bax/Bcl-2 ratio. These results suggest that bilobalide inhibits cell proliferation and induces apoptosis in FaDu human pharyngeal squamous cell carcinoma via both the death receptor-mediated extrinsic apoptotic pathway and the mitochondrial-mediated intrinsic apoptotic pathway.

11.
The Korean Journal of Physiology and Pharmacology ; : 249-257, 2020.
Article in English | WPRIM | ID: wpr-896204

ABSTRACT

The aim of the present study was to investigate the pathophysiological etiology of osteoarthritis that is mediated by the apoptosis of chondrocytes exposed to 25-hydroxycholesterol (25-HC), an oxysterol synthesized by the expression of cholesterol-25-hydroxylase (CH25H) under inflammatory conditions. Interleukin-1β induced the apoptosis of chondrocytes in a dose- dependent manner. Furthermore, the production of 25-HC increased in the chondrocytes treated with interleukin-1β through the expression of CH25H. 25-HC decreased the viability of chondrocytes. Chondrocytes with condensed nucleus and apoptotic populations increased by 25- HC. Moreover, the activity and expression of caspase-3 were increased by the death ligand-mediated extrinsic and mitochondria-dependent intrinsic apoptotic pathways in the chondrocytes treated with 25-HC. Finally, 25-HC induced not only caspasedependent apoptosis, but also induced proteoglycan loss in articular cartilage ex vivo cultured rat knee joints. These data indicate that 25-HC may act as a metabolic pathophysiological factor in osteoarthritis that is mediated by progressive chondrocyte death in the articular cartilage with inflammatory condition.

12.
International Neurourology Journal ; : 56-68, 2019.
Article in English | WPRIM | ID: wpr-764098

ABSTRACT

PURPOSE: To assess the effectiveness of alpha-1 adrenergic receptor blockers (α1-blockers) in the treatment of female lower urinary tract symptoms (LUTS). METHODS: A literature search was conducted using the PubMed/MEDLINE, Embase, and Cochrane Library databases. Fourteen studies with 1,319 patients were ultimately included. The study comprised 2 analyses: a comparison of urinary symptom scores, maximal flow rate (Qmax), and postvoid residual (PVR) urine volume before and after α1-blocker administration in 8 prospective, open-label studies and 5 randomized clinical trials (RCTs); and an evaluation of the same variables in α1-blocker and placebo groups in 4 RCTs.


Subject(s)
Female , Humans , Lower Urinary Tract Symptoms , Prospective Studies , Receptors, Adrenergic, alpha-1
14.
Journal of Periodontal & Implant Science ; : 34-46, 2018.
Article in English | WPRIM | ID: wpr-766046

ABSTRACT

PURPOSE: The purpose of this study was to evaluate the effects of 1,25-dihydroxyvitamin D₃ on the proliferation, differentiation, and matrix mineralization of MC3T3-E1 osteoblast-like cells in vitro. METHODS: MC3T3-E1 osteoblastic cells and 1,25-dihydroxyvitamin D₃ were prepared. Cytotoxic effects and osteogenic differentiation were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) activity assay, ALP staining, alizarin red S staining, and reverse transcription-polymerase chain reaction (RT-PCR) for osteogenic differentiation markers such as ALP, collagen type I (Col-I), osteocalcin (OCN), vitamin D receptor (VDR), and glyceraldehyde 3-phosphate dehydrogenase. RESULTS: The MTT assay showed that 1,25-dihydroxyvitamin D₃ did not inhibit cell growth and that the rate of cell proliferation was higher than in the positive control group at all concentrations. ALP activity was also higher than in the positive control group at low concentrations of 1,25-dihydroxyvitamin D₃ (10−10, 10−12, and 10−14 M). RT-PCR showed that the gene expression levels of ALP, Col-I, OCN, and vitamin D receptor (VDR) were higher at a low concentration of 1,25-dihydroxyvitamin D₃ (10−12 M). Alizarin red S staining after treatment with 1,25-dihydroxyvitamin D₃ (10−12 M) showed no significant differences in the overall degree of calcification. In contrast to the positive control group, formation of bone nodules was induced in the early stages of cell differentiation. CONCLUSIONS: We suggest that 1,25-dihydroxyvitamin D₃ positively affects cell differentiation and matrix mineralization. Therefore, it may function as a stimulating factor in osteoblastic bone formation and can be used as an additive in bone regeneration treatment.


Subject(s)
Alkaline Phosphatase , Antigens, Differentiation , Bone Regeneration , Calcitriol , Cell Differentiation , Cell Proliferation , Collagen Type I , Gene Expression , Glyceraldehyde 3-Phosphate , In Vitro Techniques , Miners , Osteoblasts , Osteocalcin , Osteogenesis , Oxidoreductases , Receptors, Calcitriol
15.
Journal of Korean Medical Science ; : e285-2018.
Article in English | WPRIM | ID: wpr-718202

ABSTRACT

BACKGROUND: Robot-assisted radical prostatectomy (RARP) is a feasible treatment option for high-risk prostate cancer (PCa). While patients may achieve undetectable prostate-specific antigen (PSA) levels after RARP, the risk of disease progression is relatively high. We investigated metastasis-free survival, cancer-specific survival (CSS), and overall survival (OS) outcomes and prognosticators in such patients. METHODS: In a single-center cohort of 342 patients with high-risk PCa (clinical stage ≥ T3, biopsy Gleason score ≥ 8, and/or PSA levels ≥ 20 ng/mL) treated with RARP and pelvic lymph node dissection between August 2005 and June 2011, we identified 251 (73.4%) patients (median age, 66.5 years; interquartile range [IQR], 63.0–71.0 years) who achieved undetectable PSA levels (< 0.01 ng/mL) postoperatively. Survival outcomes were evaluated for the entire study sample and in groups stratified according to the time to biochemical recurrence dichotomized at 60 months. RESULTS: During the median follow-up of 75.9 months (IQR, 59.4–85.8 months), metastasis occurred in 38 (15.1%) patients, most often to the bones, followed by the lymph nodes, lungs, and liver. The 5-year metastasis-free, cancer-specific, and OS rates were 87.1%, 94.8%, and 94.3%, respectively. Multivariate Cox-regression analysis revealed time to recurrence as an independent predictor of metastasis (P < 0.001). Time to metastasis was an independent predictor of OS (P = 0.003). Metastasis-free and CSS rates were significantly lower among patients with recurrence within 60 months of RARP (log-rank P < 0.001). CONCLUSION: RARP confers acceptable oncological outcomes for high-risk PCa. Close monitoring beyond 5 years is warranted for early detection of disease progression and for timely adjuvant therapy.


Subject(s)
Humans , Biopsy , Cohort Studies , Disease Progression , Early Diagnosis , Follow-Up Studies , Liver , Lung , Lymph Node Excision , Lymph Nodes , Mortality , Neoplasm Grading , Neoplasm Metastasis , Passive Cutaneous Anaphylaxis , Prostate , Prostate-Specific Antigen , Prostatectomy , Prostatic Neoplasms , Recurrence
16.
International Journal of Oral Biology ; : 133-140, 2018.
Article in Korean | WPRIM | ID: wpr-740076

ABSTRACT

Resveratrol (3,4′,5,-trihydroxystilbene), a phytoalexin present in grapes, exerts a variety of actions to reduce superoxides, prevents diabetes mellitus, and inhibits inflammation. Resveratrol acts as a chemo-preventive agent and induces apoptotic cell death in various cancer cells. However, the role of resveratrol in odontoblastic cell differentiation is unclear. In this study, the effect of resveratrol on regulating odontoblast differentiation was examined in MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells. Resveratrol significantly accelerated mineralization as compared with the control culture in differentiation of MDPC-23 cells. Resveratrol significantly increased expression of ALP mRNA as compared with the control in differentiation of MDPC-23 cells. Resveratrol significantly accelerated expression of ColImRNA as compared with the control in differentiation of MDPC-23 cells. Resveratrol significantly increased expressions of DSPP and DMP-1 mRNAs as compared with the control in differentiation of MDPC-23 cells. Treatment of resveratrol did not significantly affect cell proliferation in MDPC-23 cells. Results suggest resveratrol facilitates odontoblast differentiation and mineralization in differentiation of MDPC-23 cells, and may have potential properties for development and clinical application of dentin regeneration materials.


Subject(s)
Animals , Mice , Cell Death , Cell Differentiation , Cell Proliferation , Dental Papilla , Dentin , Diabetes Mellitus , Inflammation , Miners , Odontoblasts , Regeneration , RNA, Messenger , Superoxides , Vitis
17.
International Journal of Oral Biology ; : 61-68, 2018.
Article in Korean | WPRIM | ID: wpr-740070

ABSTRACT

Codium fragile (Suringar) Hariot is an edible green seaweed that belong to the Codiaceae family and has been used in Oriental medicine for the treatment of enterobiasis, dropsy, and dysuria. Methanol extract of codium fragile has anti-oxidant, anti-inflammatory and anti-cancer properties, although the anti-cancer effect on oral cancer has not yet been reported. In this study, we investigated the anti-cancer activity and the mechanism of cell death by methanol extracts of Codium fragile (MeCF) on human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that MeCF inhibits cell viability in a dose-dependent manner, and markedly induced apoptosis, as determined by the MTT assay, Live/Dead assay, and DAPI stain. In addition, MeCF induced the proteolytic cleavage of procaspase −3, −7, −9 and poly(ADP-ribose) polymerase(PARP), and upregulated or downregulated the expression of mitochondrial-apoptosis factor, Bax(pro-apoptotic factor), and Bcl-2(anti-apoptotic factor), . Futhermore, MeCF induced a cell cycle arrest at the G1/S phase through suppressing the expression of the cell cycle cascade proteins, p21, CDK4, CyclinD1, and phospho-Rb. Taken together, these results indicated that MeCF inhibits cell growth, and this inhibition is mediated by caspase- and mitochondrial-dependent apoptotic pathways through cell cycle arrest at the G1/S phase in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, methanol extracts of Codium fragile can be provided as a novel chemotherapeutic drug due to its growth inhibition effects and induction of apoptosis in human oral cancer cells.


Subject(s)
Humans , Apoptosis , Carcinoma, Squamous Cell , Cell Cycle Checkpoints , Cell Cycle , Cell Death , Cell Survival , Dysuria , Edema , Enterobiasis , Hypopharynx , Medicine, East Asian Traditional , Methanol , Mouth Neoplasms , Poly Adenosine Diphosphate Ribose , Seaweed
18.
Anatomy & Cell Biology ; : 219-229, 2017.
Article in English | WPRIM | ID: wpr-50229

ABSTRACT

Post-menopausal osteoporosis (PMO) is a major global human health concern. Owing to the need for therapeutic drugs without side effects, natural extracts containing various polyphenolic compounds that may exert estrogenic effects have been studied in depth. Rhus verniciflua Stokes (RVS), which has been used as a traditional herbal medicine for centuries in Korea, was recently revealed to exert estrogenic effects attributable to its bioactive ingredients sulfuretin and butein, which have strong estrogen receptor–binding affinities. In this study, the protective potential of RVS in PMO was evaluated by using an experimental animal model of PMO, which was established by ovariectomy (OVX) of female Sprague Dawley rats. The oral administration of RVS at 20 mg/kg or 100 mg/kg for 8 weeks markedly protected against OVX-induced atrophy of the uterine tube and reversed the elevation in the ratio of serum receptor activator of nuclear factor-κB ligand to osteoprotegerin, which is a marker of disease severity. In addition, RVS inhibited OVX-induced tibia bone loss, activated osteogenic activity, and suppressed osteoclastic activity in the tibial epiphyseal plate, a region of bone remodeling. Collectively, these factors indicated that the oral intake of RVS might be beneficial for the prevention of PMO.


Subject(s)
Female , Humans , Administration, Oral , Atrophy , Bone Remodeling , Estrogens , Fallopian Tubes , Growth Plate , Herbal Medicine , Korea , Models, Animal , Models, Theoretical , Osteoclasts , Osteoporosis, Postmenopausal , Osteoprotegerin , Ovariectomy , Rats, Sprague-Dawley , Rhus , Tibia
19.
International Journal of Oral Biology ; : 39-45, 2017.
Article in English | WPRIM | ID: wpr-54242

ABSTRACT

Metformin (1,1-dimethylbiguanide hydrochloride), derived from French lilac (Galega officinalis), is a first-line anti-diabetic drug prescribed for patients with type 2 diabetes. However, the role of metformin in odontoblastic cell differentiation is still unclear. This study therefore undertook to examine the effect of metformin on regulating odontoblast differentiation in MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells. As compared to controls, metformin significantly accelerated the mineralization, significantly increased and accelerated the expressions of ALP and Col I mRNAs, and significantly increased the accelerated expressions of DSPP and DMP-1 mRNAs, during differentiation of MDPC-23 cells. There was no alteration in cell proliferation of MDPC-23 cells, on exposure to metformin. These results suggest that the effect of metformin on MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells, facilitates the odontoblast differentiation and mineralization, without altering the cell proliferation.


Subject(s)
Animals , Humans , Mice , Cell Differentiation , Cell Proliferation , Dental Papilla , Metformin , Miners , Odontoblasts , RNA, Messenger
20.
International Journal of Oral Biology ; : 47-54, 2017.
Article in Korean | WPRIM | ID: wpr-54241

ABSTRACT

Anthriscus sylvestris (L.) Hoffm. is a perennial herb found widely distributed in various regions of Korea, Europe, and New Zealand. The root of A. sylvestris have been extensively used in the treatment for antitussive, antipyretic, cough remedy in Oriental medicine, but the physiologically active function of the leaf of A. sylvestris is as yet unknown. In this study, we investigated the anti-cancer activity and the mechanism of cell death of water extracts of leaf of Anthriscus sylvestris (WELAS), on human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that WELAS treatment inhibited cell viability in a concentration- and time-dependent manner. In addition, the treatment of WELAS markedly induced apoptosis in FaDu cells, as determined by the viability assay, DAPI stain and FACS analysis. WELAS also increased the proteolytic cleavage of procaspase-3, -9 and PARP (poly(ADP-ribose) polymerase). In addition, exposure to WELAS decreased the expression of Bcl-2 (an anti-apoptotic factor), but increased the expression of Bax (a pro-apoptotic factor), suggesting that mitochondria-dependent apoptotic pathways are mediated in WELAS-induced apoptosis. Taken together, these results indicate that water extracts of leaf of A. sylvestris inhibits cell growth and induces apoptosis via the mitochondrial-dependent apoptotic pathway in FaDu human hypopharyngeal squamous carcinoma cells. Therefore, we propose that the water extracts of leaf of A. sylvestris is a novel chemotherapeutic drug, having growth inhibitory properties and induction of apoptosis in human oral cancer cells.


Subject(s)
Humans , Apoptosis , Carcinoma, Squamous Cell , Caspase 3 , Cell Death , Cell Survival , Cough , Europe , Hypopharynx , Korea , Medicine, East Asian Traditional , Mouth Neoplasms , New Zealand , Water
SELECTION OF CITATIONS
SEARCH DETAIL